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ABSTRACT: According to Ehrenfest classification, the glass transition is a second-order
phase transition. Controversy, however, remains due to the discrepancy between ex-
periment and the Ehrenfest relations and thereby their prediction of unity of the
Prigogine-Defay ratio in particular. In this article, we consider the case of ideal
(equilibrium) glass and show that the glass transition may be described thermodynam-
ically. At the transition, we obtain the following relations:

dT
dP 5

Db

Da

and

dT
dP 5

TVDa~1 2 L!

DCP 2 DCV

with L 5 ~agbl 2 albg!
2/blbgDa2;

dV
dP 5 V

agbl 2 albg

Da
,

dV
dP 5

blbg~DCP 2 DCV!~agbl 2 albg!

TDa~al
2bg 2 ag

2bl!
;

dV
dT 5 V

~agbl 2 albg!

Db

and

dV
dT 5

blbg~DCP 2 DCV!~agbl 2 albg!

TDb~al
2bg 2 ag

2bl!
.

The Prigogine-Defay ratio is

P 5
1

1 2 ~DCV 2 G!/DCP

with G 5 TV(albg 2 agbl)
2/blbgDb, instead of unity as predicted by the Ehrenfest

relations. Dependent on the relative value of DCV and G, the ratio may take a number equal
to, larger or smaller than unity. The incorrect assumption of perfect differentiability of
entropy at the transition, leading to the second Ehrenfest relation, is rectified to resolve the
long-standing dilemma perplexing the nature of the glass transition. The relationships
obtained in this work are in agreement with experimental findings. © 1999 John Wiley &
Sons, Inc. J Appl Polym Sci 71: 143–150, 1999
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INTRODUCTION

The glassy state is a universal phenomenon. It is
observed in polymers, organic liquids, inorganic
melts, biological macromolecules, colloids, super-

conductors, spin glass, nonmetallic and metallic
elements, and alloys, among others. The nature of
glass and the glass transition is currently one
fundamental question of great controversy in con-
densed matter physics, and may show practical
impact and importance for exploring the modes of
state in which matter can exist.1–7Journal of Applied Polymer Science, Vol. 71, 143–150 (1999)
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The thermodynamic character of the glass
transition has been widely revealed, well demon-
strated in polymeric materials in particular.8 For
example, the temperature characterizing the
transition, glass transition temperature, displays
remarkably a number-averaged molecular weight
dependence. Practically, it can be calculated by
the group-contribution techniques, and has been
correlated to the solubility parameter or cohesive
energy of the material. The findings of the corre-
lation between the melting temperatures and
glass transition temperatures further support the
idea that the glass transition is thermodynami-
cally based. In the glass transition region, many
thermodynamic, physical, mechanical, electrical,
and other properties of glass undergo consider-
able changes that may be predictable in principle.

Near and below the glass transition, however,
the process is greatly slowed down, and the time
scale of molecular motion is so prolonged that the
time scale of the experiment is comparable to or
even shorter than it, as often manifested in the
time and history dependence of the experiment. If
the experiment done is sufficiently slow, namely,
enough time is allocated for the system to relax,
an ideal thermodynamic liquid–glass transition
may be observable. The dynamic treatment of the
glass transition paints the kinetically controlled
aspect of the system near the glass transition and
is actually rooted in thermodynamics.9

We intend to resolve the long-standing di-
lemma perplexing the nature of the glass transi-
tion, due to the discrepancy between experiments
and the Ehrenfest relations, and thereby their
prediction of unity of the Prigogine-Defay ratio. In
this article, the case of ideal (equilibrium) glass
transition is considered, and its extension to real
glass is treated elsewhere.25 The presentation is
organized as follows. We first review the Ehren-
fest relations and their prediction on the Prigo-
gine-Defay ratio and then compare them with
experimental results. In The New Thermody-
namic Expression section we provide a simple
procedure to derive a general expression for the
Prigogine-Defay ratio, applying the same thermo-
dynamic relation above and below the transition
line. Then, in the next section we discuss the
relationships between volume, pressure, and tem-
perature at the transition. Such an analysis con-
sistently leads to the same result for the Prigog-
ine-Defay ratio. In the Nonanalytical section, we
analyze the problem of perfect differentiability of
entropy at the transition line, resulting in the
second Ehrenfest relation. The last section high-
lights the nature of glassy state and sums up the

results obtained in this article. In the Appendix
we discuss concrete examples in the literature.

EHRENFEST RELATIONS VS. EXPERIMENTS

It is experimentally found at the liquid–glass
transition or simply the glass transition that the
first derivatives of the free energy as volume,
enthalpy, and entropy are continuous quantities,
but the second derivatives as specific heat, com-
pressibility, and thermal expansion coefficient
manifest anomalous jumps. In light of Ehrenfest
classification, the glass transition is thereby a
second-order phase transition. In this article, we
use the glass transition and second-order phase
transition interchangeably.

Ehrenfest implicitly hypothesized further, be-
sides the continuous changes of volume and en-
tropy, that the volume and entropy are perfect
differentiable through the glass transition line,
i.e.,

Condition I dVl~T3 Tg
1 ! 5 dVg~T3 Tg

2 !

or dVl 5 dVg

and

Condition II dSl~T3 Tg
1 ! 5 dSg~T3 Tg

2 !

or dSl 5 dSg

He then obtained the following celebrated rela-
tions,10

SdT
dPD

e

5
Db

Da
(1)

SdT
dPD

e

5
TVDa

DCP
(2)

where P, V, and T are the pressure, temperature
and volume of the system, the thermal expansion
coefficient

a 5
1
V S­V

­TD
P

,

compressibility

b 5 2
1
V S­V

­PD
T

,
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specific heat at constant pressure

CP 5 S­H
­TD

P

with H the enthalpy, and DX ; Xl 2 Xg for all
X (l 5 liquid, g 5 glass). The subscript e in

SdT
dPD

e

stresses that the expressions are originated from
Ehrenfest’s hypothesis.

It is widely believed that if the glass transition
is a thermodynamic phase transition the Prigo-
gine-Defay ratio11 defined as

P 5
DCpDb

TVDa2 (3)

should be 1, P 5 1, as the result of the Ehrenfest
relations (1) and (2).

Experimentally, there is no consensus reached
yet to confirm the Ehrenfest relations, partly due
to the difficulties in obtaining relevant pressure
data and the relevant parameters often obtained
from different samples.12 Nonetheless, it may be
summarized that the first Ehrenfest relation of
eq. (1) is inconclusive, and the second of eq. (2)
applies only in the majority of materials investi-
gated.2,12–15 Moreover, the prediction of the Pri-
gogine-Defay ratio, often used as a criterion for a
second-order phase transition, finds little con-
vincing support by existing experimental results,
which are usually other than 1.2,13–16 This situa-
tion questions whether the glass transition is a
thermodynamic phase transition and leans to
suggest nonequilibrium roots of the transition. It
is thought that additional internal parameters,
ordering parameters, need to be introduced into
the description of the glass transition. Unfortu-
nately, such an approach, though modifying the
Ehrenfest relations, fails to alter the result of
P 5 1,11,17 and a more recent attempt gives a
value of less than 1 for P.12

In the next two sections, we give two consistent
methods in the vein of thermodynamics to derive
the expression for the Prigogine-Defay ratio, not
necessarily to be unity, for second-order phase
transitions in general. In the second method

dT
dP ,

dV
dP and

dV
dT

at the transition are derived simultaneously.

A NEW THERMODYNAMIC EXPRESSION
FOR P

To circumvent the uncertainty of the analytic be-
havior of thermodynamic functions at the second-
order phase transition, we begin with the thermo-
dynamic relation below18:

CP 2 CV 5 TVaS­P
­TD

V

(4)

with the specific heat at constant volume

CV 5 S­U
­TD

V

(U 5 internal energy). This relation is strictly
satisfied away from a phase transition point
(line), and is applicable to the both sides of the
transition, i.e., the respective glassy and liquid
state in the present case. On inserting the rela-
tion of

S­T
­PD

V

5
b

a

into eq. (4), we reach

DCP 2 DCV 5 TVD
a2

b
(5)

where

DCV 5 CV,l 2 CV, g, D
a2

b
5

al
2

bl
2

ag
2

bg
,

and the assumption of continuous volume Vl
5 Vg 5 V at the transition was applied. Equa-
tion (5) may equivalently be rewritten in the form
of the Prigogine-Defay ratio:

P 5
1

1 2
~DCV 2 G!

DCP

(6)

where

G ;
TV~albg 2 agbl!

2

blbgDb
.
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Equation (6) is usually not to be unity, except in
the case of DCV 5 G, so the value of P predicted
from the Ehrenfest relations is a special case of
eq. (6).

We point out that eq. (6) is valid for nonideal
glass.25 The Appendix discusses concrete exam-
ples, illustrating the influences of the isochoric
heat capacity difference DCV and the thermome-
chanical quantity G on the Prigogine-Defay ratio.
The observation of the ratio P other than 1, actu-
ally much larger than 1 for the samples analyzed
there, is in consistency with the prediction of eq.
(6), which can, dependent on the magnitude of the
difference of (DCV 2 G) to DCP, take values
differing from 1.

EXPRESSIONS FOR dT /dP , dV /dP , AND
(dV )/(dT ) AT THE TRANSITION

The variables of P, V, and T define the transition,
and we assume the perfect differentiability of vol-
ume (thereby pressure and temperature) at the
transition line, dVl 5 dVg, in addition to the
continuous volume Vl 5 Vg. Then, we may take
the temperature T as a thermodynamic function
in terms of variables P and V. After the expansion
it holds

dT
dP 5 S­T

­PD
V

1 S­T
­VD

P

dV
dP 5

b

a
1

1
Va

dV
dP

(7)

From the existence of

dT
dP ,

dV
dP

at the glass transition line, we are led to

bl

al
1

1
Val

dV
dP 5

bg

ag
1

1
Vag

dV
dP (8)

or

dV
dP 5 V

agbl 2 albg

al 2 ag
5 V

agbl 2 albg

Da
(9)

In terms of eq. (9), the behavior of dV/dP at
the transition line is determined by the relative
signs of

Sbl

al
2

bg

ag
D

and Da.
The expression for dT/dP follows simply from

eqs. (7)–(9),

dT
dP 5

bl

al
1

1
Val

V
agbl 2 albg

al 2 ag

5
bg

ag
1

1
Vag

V
agbl 2 albg

al 2 ag
5

Db

Da
~10!

Equation (10) is identical with the first Ehrenfest
relation of eq. (1), for both the derivation proce-
dures have essentially made use of the same hy-
pothesis, the perfect differentiability of volume at
the transition.

Furthermore, we may expand the entropy S in
terms of variable pairs of (P, T) and (T, V),
respectively,

dS
dT 5 S­S

­TD
P

1 S­S
­PD

T

dP
dT 5

CP

T 2 Va
dP
dT (11)

dS
dT 5 S­S

­TD
V

1 S­S
­VD

T

dV
dT 5

CV

T 1
a

b

dV
dT (12)

In the above equations, we have invoked the
identities of

S­S
­PD

T

5 2S­V
­TD

P

5 2Va

and

S­S
­VD

T

5 S­P
­TD

V

5
a

b
.

Consequently, we have a second relation for
dT/dP expressed in CP and CV from eqs. (11) and
(12),

Va
dP
dT 5

CP 2 CV

T 2
a

b

dV
dT (13)

Again, eq. (13) is valid on the both sides of the
transition, i.e.,

Val

dP
dT 5

CP,l 2 CV,l

T 2
al

bl

dV
dT (14)
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and

Vag

dP
dT 5

CP, g 2 CV, g

T 2
ag

bg

dV
dT (15)

In the above, we as before supposed the exis-
tence of

dP
dT ,

dV
dT ,

dV
dP

and the continuous volume at the transition. Sub-
tracting eq. (14) from eq. (15), writing

dV
dT 5

dV
dP

dP
dT

and then using eq. (9), we get

dP
dT 5

DCP 2 DCV

TVDa
1

~agbl 2 albg!
2

blbgDa2

dP
dT (16)

or

dP
dT 5

DCP 2 DCV

TVDa~1 2 L!
(17)

where

L 5
~agbl 2 albg!

2

blbgDa2 .

This formulation for (dT)/(dP) from entropy is
evidently different from the second Ehrenfest re-
lation of eq. (2), except under the specific condi-
tion of eq. (24) below, for in the derivation of the
latter the perfect differentiability of entropy at
the transition is incorrectly assumed dSg 5 dSl
at the transition (see next section). If we recall eq.
(5), eq. (17) is equivalent to eq. (10).

Now it is straightforward to obtain the expres-
sion for dV/dT at the transition, just by inserting
dV/dP of eq. (9) and dP/dT of eq. (17) into

dV
dT 5

dV
dP

dP
dT ,

dV
dT 5

blbg~DCP 2 DCV!~agbl 2 albg!

TDb~al
2bg 2 ag

2bl!
(18)

Replacing (DCP 2 DCV) by eq. (5), the above
equation is simplified to

dV
dT 5 V

~agbl 2 albg!

Db
(19)

which can be conveniently worked out by combin-
ing eqs. (9) and (10) as well. This expression may
be used to describe the volume at the transition as
a function of temperature and the behavior relies
on the relative signs of

Sbl

al
2

bg

ag
D

and Db.
Equating eqs. (10) and (17), the same expres-

sion as eq. (6) for the Prigogine-Defay ratio is
obtained once more. It indicates that the assump-
tion of perfect differentiability of volume at the
transition is established from the viewpoint of
thermodynamics, besides experimental verifica-
tions. We stress that in our approach the perfect
differentiability of entropy at the transition is not
hypothesized, which necessarily accounts for the
second Ehrenfest relation. The temperature and
pressure play similar roles in the glass transition.

NONANALYTICITY OF ENTROPY
AT THE TRANSITION LINE

We come to discuss the invalidity of part of the
entropy assumption in deriving the second
Ehrenfest relation, i.e., dSl(T 3 Tg

1 ) 5 dSg(T 3
Tg

2 ). This relation states that entropy is a perfect
differentiable at the transition line. However, the
assertion may be untrue, due to the fact that its
analyticity at the transition is actually ignored,
though the entropy itself is continuous at the
transition.

Physically, ordering takes place through a sec-
ond-order phase transition, as observed in phe-
nomena as zero-field superconducting transition,
superfluity transition, magnetic transition, order-
ing of alloys, and others,19 indicating a possible
singularity of entropy at the transition point.
Mathematically, we prove below that the inequal-
ity is the general case,

dSl~T3 Tg
1 ! Þ dSg~T3 Tg

2 !

or simply

dSl Þ dSg (20)
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Actually, we may write dSl and dSg in difference
as

dSl 2 dSg 5 SDCP

T 2 V
Da2

Db D dT (21)

if eqs. (10) and (11) are recalled. Or alternatively
expressed in the Prigogine-Defay ratio,

dSl 2 dSg 5 ~P 2 1!V
Da2

Db
dT (22)

It is clear from the above relation (Db . 0) that

dSl~Tg!

dT .
dSg~Tg!

dT
P . 1

dSl~Tg!

dT 5
dSg~Tg!

dT if P 5 1

dSl~Tg!

dT ,
dSg~Tg!

dT
P , 1 ~23!

or vice versa. For we may write dT in

SdT
dXD dX ~X 5 P, V!,

similar relations as eq. (23) hold for

dSl~Tg!

dX ,
dSg~Tg!

dX ,

dependent on the sign of dT/dX.
Obviously, the criterion for

dSl 5 dSg is P 5 1 or DCp 5
TVDa2

Db
,

which is equivalent to

DCV 2 G 5 0 or DCV 2
TV~albg 2 agbl!

2

blbgDb
5 0

(24)

which, in turn, leads to the correspondence be-
tween the quantities P and (DCV 2 G)

P . 1 DCV 2 G . 0

P 5 1 if DCV 2 G 5 0

P , 1 DCV 2 G , 0 ~25!

or vice versa DCp . 0. As the consequence, the
Prigogine-Defay ratio may take a number equal
to, larger, or smaller than unity, depending on the
relative value of DCV and G.

According to the above analysis, the analyticity
(perfect differentiability) of entropy at the transi-
tion line is a restrictive, experimentally unveri-
fied assumption, only valid under the condition of
P 5 1, and disregards of the continuity of entropy
itself at the transition line. Alternatively stated,
entropy is nonanalytic at the transition line.
Hence, that the second Ehrenfest relation of eq.
(2) and the corresponding prediction of unity of
the Prigogine-Defay ratio, P 5 1, is generally
incorrect, only a specific result of the more gen-
eral treatment in our approach.

NATURE OF THE GLASSY STATE
AND SUMMARY

Glass is a crystal-like short-range ordered, liquid-
like long-range disordered solid.4,5,20,21 It is a spe-
cial condensation state of matter, sharing both
local crystalline characteristics and long-range
liquid features. Like other second-order transi-
tions,19 the glass transition is an ordering pro-
cess, and there is a further reduction of symmetry
in the transition from the liquid phase to the glass
phase. The onset of the glassy state begins at the
transition and proceeds further with lowering
temperature. Experimental findings indicate mi-
croheterogeneity of glass. As the glass transition
is a second-order phase transition, the apparent
paradox of Kauzmann23 is naturally removed. It
may be concluded that the glass transition of
ideal glass is a thermodynamic second-order
phase transition, while the counterpart of real
glass, which is a thermodynamically rooted, ex-
perimental time scale disguised second-order
phase transition.25 The glass transition in both
the cases may be analyzed under the general the-
ory of second-order phase transitions.22

In this article, we show that the additional
assumption of perfect differentiability of entropy
at the transition, necessary for the derivation of
the second Ehrenfest relation, is incorrect and the
problem is solved to remove the dilemma perplex-
ing the nature of the glass transition. The two
thermodynamic methods of self-consistence give
the expression for the Prigogine-Defay ratio,

P 5
1

1 2 ~DCV 2 G!/DCP
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with G 5 TV(albg 2 agbl)
2/blbgDb, which has

been applied to reanalyze experimental results in
the Appendix. Dependent on the relative value of
DCV and G, the ratio may take a number equal to,
larger, or smaller than unity. In particular, we re-
capitulate the following relations at the transition:

dT
dP 5

Db

Da

and

dT
dP 5

TVDa~1 2 L!

DCP 2 DCV

with L 5 (agbl 2 albg)2/blbgDa2;

dV
dP 5 V

agbl 2 albg

Da

and

dV
dT 5 V

~agbl 2 albg!

Db
.

These relations may be properly used to discuss
experimental observations as recently reported
by Colucci et al.16 on the change of the volume at
the transition line as a function of pressure and
temperature.

APPENDIX

To illustrate the effects of the terms DCV and G in
eq. (6) on the Prigogine-Defay ratio P, we used the

Table I Thermodynamic Parameters for Three Glass-Formers at the Glass Transition Domains

B2O3

40 mol % Ca(NO3)2
260 mol % KNO3 Poly(vinylacetate)

T (K) 550 340 303.8
103 V (m3/kg) 0.558 0.456 0.843
104 al (K21) 4.0 3.5 7.12
104 ag (K21) 0.5 1.2 2.80
1011 bl (m2/N) 40 13.2 49.81
1011 bg (m2/N) 12 6.3 28.96

G 5
~agbl 2 albg!

2)
blbgDa2

0.13 0.09 0.17

1022 TV
al

2

bl
(J/K z kg) 1.23 1.44 2.61

1022 TV
ag

2

bg
(J/K z kg) 0.06 0.35 0.69

1022 CP,l (J/K z kg) 19.3 14.9 18.0
1022 CP,g (J/K z kg) 13.0 9.5 13.0
1022 DCP (J/K z kg) 6.3 5.4 5.0
1022 CV,l (J/K z kg) 18.1 13.5 15.4
1022 CV,g (J/K z kg) 12.9 9.1 12.3
1022 DCV (J/K z kg) 5.2 4.4 3.1
G (J/K z kg) 17.9 10.4 38.1

G

DCV
~%! 3.4 2.4 12.3

DCV

DCP
~%! 82.5 81.5 62

G

DCP
~%! 2.8 1.9 7.6

P (omission of ¥) by eq. (6) 5.7 5.4 2.6
P (including ¥) by eq. (6) 4.9 4.7 2.2
P 5 DCpDb/TVDa2 (as defined) 4.7 4.5 2.2

Underlined experimental data in ref. 24 are selected here.

IDEAL GLASS TRANSITION 149



experimental data collected by Gupta and Moyni-
han (see Table I).24 The values of CV are calcu-
lated based on eq. (4). From Table I we find that in
the glass transition domains the isothermal spe-
cific heats are comparable to the isobaric specific
heats in the strong glasses of B2O3 and 40 mol %
Ca(NO3)2–60 mol % KNO3, in contrast to that of
the fragile glass poly(vinylacetate). This may ac-
count for the fact that the Prigogine-Defay ratio P
of the strong glasses is much larger than 1,
whereas it approaches unity for the fragile glass
(also see ref. 15). Comparing the differences of

TV
a2

b
,

G

DCV
and

G

DCP

between the strong and fragile glasses, the ten-
dency is evident that the quantities are larger for
the fragile glass than for the strong glasses,
which may energetically and structurally shed
light on the fragility of glass.7

This report was presented at the Texas Section Spring
Meeting of American Physics Society, San Antonio,
March 19–21, 1998 and the abstract appeared in the
APS Bulletin, June 1998.
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